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N U M E R I C A L  S T U D Y  OF THE I N T E R A C T I O N  

OF A S U P E R S O N I C  G A S E O U S  JET W I T H  A P L A N A R  T A R G E T  

A. L. Adrianov,  A.  A.  Bezrukov,  and Yu. A. Gaponenko UDC 533.6.011.72 

Various regime:, of  interaction of an a:Nsymmetric supersonic underexpanded .jet of a gas with 

both a finite and an infinite planar target are studied numerically. The model of an ideal 
perfect gas and one variant of Godunov's highly accurate scheme are used. The calculated and 

exper'imeatal frequency spectra of pressure oscillations in the center of the targ. et are compared: 

their good agreement is observed. 

I N T R O D U C T I O N  

The  interaction of an axisymmetric SUl)ersonic jet with a planar target l)erl)endicular to the jet taxis has 
been studied rather extensively both experimentally and theoretically (see, for instance [1-6]). Nevertheless, 
there is some disagreenmnt b e t x ~ n  the results of numerical calculations and l)hysical experiments, especially 
for an infinite I)lanar target.  The re~kson tbr this disagreement is the fact that  most researchers used a finite- 
size ta rge t  (of the order of the nozzle diameter) in their numerical experinmnts. In this case, a regime of 
self-induced oscillations" with a small immt)er of harmonics and a clear flmdamental tone with a significant 
ampl i tude is observed, which makes it i)ossible to conq)are the results obtailmd with a plwsical experiment. 
For an infinite (of significant length) target, it follows from the results of the physical experiment that  the 
autooscil latory mechanism is expressed less clearly and is characterized by a complex frequency spectrum, 
which it is difficult to be reproduce in a nmnerical model (difference scheme). Note that the results of 
independent  physical experiments conducted using different equilmmnt are in good agreement. This confirms 
the credibility of these results. The re~on for tim discret)ancy between the munerical results and experimental 
da ta  m a y  be the quality of the numerical method used an(t the fornmlation of the boundary conditions. 

In the present work, the numerical model is tested on two autooscillatory processes (with known 
characteristics) of interaction of a jet and a target locate(1 normal to it. The calculation results are compared 
with the  da ta  of independent t)hysical experiments. The choice of geometric dimensions of the computational 
domain and the target corresponds to the formulation of the problem in one physical experiment or another. 

1. N U M E R I C A L  M O D E L  

1.1. F o r m u l a t i o n  o f  t h e  P r o b l e m  ( B o u n d a r y  a n d  In i t i a l  C o n d i t i o n s ) .  A conical nozzle of 
radius OA - rA = 1 (after the corresl)onding normalization) with a semi-al)ex angle OA is located at a (listance 
h, from a planar target DF, wtfich is located normal to the nozzle (Fig. 1). The SUl)ersonic exhaustion from 
this nozzle (segment OA of the COmlmtational domain l)oundary) is modeled by a flow from an isentropic 
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source. The  segment OD of the computat ional  domain boundary  is the axis of symmetry. The segments 
of the "boundary" AB, BC, and CF are "transparent" for disturbances leaving the domain. Thompson's  
"nonreflecting" conditions were imposed on them [7]. The change in the position of the point F separating 
different segments of the boundary DC simulates the finite size of the target (the limiting case DF = DC 
corresponds to an infinite target). 

Initially, the space around the nozzle is filled by a s ta t ionary  gas whose state is determined by the 
pressure p ~ ,  density p~ ,  and ratio of specific heats % Using a given Mach number at the nozzle exit MA, jet  
l)ressure ratio n, and reduced parameters of  the ambient space, we calculate a steady flow from the above- 
mentioned source. In fact, this procedure reduces to determinat ion of the Mach number M in an arbitrary 
point of the segment OA of the computat ional  domain boundary  (Fig. 1). 

1.2.  G o v e r n i n g  E q u a t i o n s .  To describe unsteady spatial  (with planar and axial symmetry) flows 
of an inviscid heat-non-conducting gas, we write the system of gas-dynamic equations in a divergent form: 

OU + OF(U_.._2) + OG(U__.__.~) = - H ,  
Ot 0x Oy 

U = (p, pu, pv, e) t, F ( U )  = (pu, pu  2 + p, puv,  (e + p)u) t, 

G ( U )  = (p'b, ['uv, pv 2 + p, (e + p)v) t, 

( .2 + ,? ) 

H ( U )  = ~ ( p e ,  puv, p v - , ( e + p ) v )  t, 

P 
- 1) 

(i) 

Here p is the (leILsit), u and v are the velocity components along the x and y axes, p is the pressure, e is 
the total energy, and ~ is tile specific internal  energy; u = 0 and 1 refer to the planar and axial symmetry, 

respectively. 
1.3. M e t h o d  o f  So lu t i on .  It is known [1, 3] that  the method of identification of discontinuities is 

perfect for numerical description of inviscid heat-non-conducting gas flows from the viewpoint of accuracy 
(approximation errors). As is shown in [3], this method can be used almost without any limitations for two- 
dimensioual steady sut)ersonic flows with captur ing (and possible filtration) of all gas-dynamic discontinuities, 
including the weak ones. In our case, however, tim use of this approach, as with the approach proposed by 
Godunov et al. [1] (with eat)turing of the "nmin" discontinuities only) is not justified because of the dramatic 
increase in the comt)lexity of the algorithm of ideutification of a prior unknown structure of discontinuities. 

The shock-eai)turing method described below was used to solve this prol)lem. 
For numerical integration of system (1), we used a quasi-monotonic difference scheme of high accuracy 

[8], which is a modification of the known two-dimensional difference scheme proposed by S. K. Godunov [1]. 

We briefly describe the scheme used. 
The  difference analog of system (1) on a rectangular gTid may be written in the form of the following 

two-step difference scheme: 
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, r ( F "  " r n n let , 
U'i: +' = Ui , j  - ~ i+t/2,j - F i - , / 2 , j )  - ~ (Gi , j+ l /2  - G i , j - , / 2 )  - y,:,j Hi , j"  (2) 

Here hx  = A:r = :ri+t/uj - x i_ l /2 ,  j ,  hy = A y  = Y i , j + l / 2  - Y i , j - l / 2 .  and v = t "+1 - t" is the step of 
the grid. The  subscripts i and j correspond to tile vahms of the quantities at the cell centers ("small" 

quanti t ies in Godunov's  scheme), i • 1/2 and  j • 1/2 refer to tile vahms at the ribs of the grid ("large" 

quantit ies in Go(hmov's scheme), and 7~ corresponds  to the values of the quantities in the time layer t = or .  

To increase the order of accuracy" ill spat ia l  variables in our var iant  of the scheme, we used a piecewise- 

continuous at)proximation of the solution with a linear distr ibution of the quantities over the cell instead of a 

piecewise-constant approxinmtion (Godunov ' s  schenm). "Large" quantit ies,  for example,  (R.  U. P) i+U2, j  and 

(R ,  V, P)i , j+U'2, which enter tile components  of tile auxiliary vectors F = F ( m L ,  m R )  and G = G ( g  L, g a ) .  
are calculated by solving the corresponding one-dimensional  problem of the decay of an arbitrary discontinuity 

for the following int)ut t)aranmters: 

m L , i + l / 2 , J  (p ,  t ~- "~L, P ) L , i + I / 2 , j '  m R , i + l / 2 ,  j ----- (p ,  U, t ) ) t , i + l / 2 , j ,  

U t t 
g L , i , j + l / 2  (P , '  , P ) L , i , j + I / 2 ,  g R , i , j + l / 2  = ( P , V , P ) R , i , j + I / 2 .  

In accordance with the accepted linear d is t r ibut ion of the quanti t ies over the cell, tlm expressions for the 

vector conlponents are written as 

1 
"~,L = m i , j  + ~ ( b ( r i , j ) ( l l z i , j  - -  ' m . i - l , j ) ,  

1 
gL = gi , j  4:- ~ ( ~ ( s i , j ) ( g i ,  j - -  g i , j - l ) ,  

1 
71Z R -~ l,  gi+ l,  j - -  -~ (I~('l'i-~l,j ) ('DZi+ l , j  - - H l i , j )  , 

,aR = ,a~,~+l - ~ ' I ' ( s ~ J + t ) ( g ~ , j + l  - 9~,j) ,  z., 

where "l'i, j -~- (ll~,i+l,j  --  m . i , j ) / ( H t i , j  --  ' I l l i - l , j )  and  8i,j ~-- (gi,j+l - g i , j ) / (g i , j  - g i , j - l ) ;  the subscripts L and R 
correspond to the left and right (upper and lower) vicinities of a given rib. 

Tile function (I)(,') plays the role of a l imiter  of tile derivative and a monotonizator  of tim solution. 

As is shown by Spekreijse [9], depending on the form of the flmction (I)(,'), we can construct a fanfily of 
"monotoific" difference sclmmes. \vtfich have the second order in spat ia l  variables in the region of tile smooth 

solution and a high degree of localization of gas-dymmfic discontinuities. In our  calculations, we used the 

linfiter (I)(r) = ( , ' +  I,'l)/(1 + I"1) as the function (I)(r). 
The  step of integration in t ime r is chosen in tile course of computa t ion  at  each time layer from the 

conditions of stability for tile two-dinmnsional schenm [1]: r = KT:~:'cy/(r~ + r.~), where 0 < K < 1, and v. 
and r U are t ime interv~fis during which tile waves formed in tile R iemann  l)roblem reach the cell boundary 

along the x and y axes, respectively. 

2. N U M E R I C A L  S I M U L A T I O N  

2 .1 .  A u t o o s c i l l a t o r y  F l o w  u p o n  I n t e r a c t i o n  o f  a J e t  w i t h  a F i n i t e  Targe t .  Tile calculation 

was performed for a jet with the following paramete rs :  Math  number  at tile nozzle exit MA = 2. jet pressure 

ratio n = 3, ratio of specific heats ? = 1.4, nozzle radius ,'A = 15 ram, and semi-apex angle of tile nozzle 

#A = 10 ~ A planar target  of size "F = 6.5rA was located in a s teady  flow at a distance of h = 7.3,'A, 7.5rA, 

and 8.0rA from the nozzle exit. The calculat ion was l)erfornmd on a uniform grid A x  = Ay = 0.05rA. The 
calculation results for h = 8,'A are plot ted in Figs. 2 and 3 [the g raph  of oscillations of dimensionless pressure 

on tim target  at the stagnation tx)int is shown in Fig. 2 and tile frequency spec t rmn of the process p(t) is 

shown in Fig. 3]. 
One result of the conducted series of calculat ions (for different h.) is the satisfactory agreement between 

tile fundainental  frequency of tile simulated process and tile corresponding frequency in tile experiments [5.6] 
(see Table  1). Apart  from tile f lmdamental  frequency, additional frequencies were revealed, which were not 

observed in [5, 6], possibly because of tile t ime lag of the measurement  equipment used and tile roughness of 

tim numerical  nmthod (method of coarse part icles) .  
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TABLE 1 

9 t, msec 

P 

10. 

0.5- 

! 0 20 f, kHz 

Fig. 3 

7.3rA 
7.5rA 
8.0rA 
6.39rA 
6.95rA 
7.51rA 

Experimental frequencies, kHz 

[5, 61 [101 

1.33 
1.33 
1.18 

10.01, 19.531, 29.297 
9.033, 17.822, 26.6ll 
8.30t, 16.602, 23.715 

Calculated frequencies, kHz 

1.556, 2.140, 7.976, 11.868 
1.315, 1.972, 4.932, 11.837 
1.167, 1.751, 7.587, 10.117 
10.76, 19.36, 31.19 
9.971, 28.339, 32.557 
8.921, 17.843, 26.240 

2.2.  A u t o o s c i l l a t o r y  F low u p o n  I n t e r a c t i o n  o f  a J e t  w i t h  a n  I n f i n i t e  T a r g e t .  An infinite 
t a rge t  was located in a steady flow with the following parameters: MA = 2.098, n = 4.785. ~f = 1.4, and 

0A = 4 ~ The calculation wa.s performed on a uniform grid A:r = Ag = 0.05rA. Tim calculation results for 
h ---- 6.95rA are t)lotted in Figs. 4 Knd 5. The nozzle-exit radius rA was assumed to l)e equal to the nozzle, exit 

radius  in tim exI)eriment of [10]. Figure 4 shows pressure oscillations on the target  at  tim stagnation point .  
Figure  5 shows the frequency spectrum of the process p ( t ) .  

The  mmmrical frequencies obtained in a series of calculations and the exper imenta l  data  of [10] are 
l isted in Table 1. V~re note that the calculated and experimental frequencies are in good agreenmnt (within 

5-7%).  In the numerical solution (for an infinite target) ,  high-frequency components  of  the sI)ectrum (28 kHz 
and higher) were obtained; their amplitude was higimr than in ttm experiments.  In our  opinion, the reason 
is tim line of the perfect (inviscid) gas model and the insufficient schenm viscosity of  the numerical met i tod  

used, and also the time lag of the measurement equipment in the physical exper iment  [10]. 
Note that  the numerical and experimental  results were also in good agreement  in tim case of a s teady  

flow formed upon interaction of a supersonic jet with an infinite target and in- tim case of an autooscil latory 

flow with  known cimracteristics ut)on interaction of the jet wittl a target  of the order  of the nozzle-exit 
d i ame te r  [10]. 

3 .  D I S C U S S I O N  O F  R E S U L T S  

An analysis of tile results obtained showed tha t  ttmy are in good agreement wi th  tim results of physical 

exper iments  [5, 10], fbr examl)le, in terms of the frequency of l)ressure oscillations at  the stagnation point  

on the  target. Tim mechanism of self-induced oscillations was studied. It  has tim following features (noted 

previously in the literature). A l)eripheral supersonic flow possessing a high s tagna t ion  pressure pinctms the 
centra l  subsonic flow, and a peripheral s tagnation point is formed. The closure of  tim central zone of tim 

flow leads to the accumulation of the gas in this region and the displacenmnt of tim central  shock toward tim 
nozzle, which involves an incre&se in pressure ups t ream of the target with subsequent  unclosing of this zone. 
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The low scheme viscosity of tile numerical method used does not allow one to damp high-frequency processes 
in the closed central zone. At the same time, it is insufficient for smoothing significant nonphysical shocks 
("noise") on the target at the stagnation point (see Figs. 3 and 5). Nevertheless, the frequency characteristics 
obtained by means of the Fourier analysis correspond to experimental data. 

It should be noted that. as the target size increases, the distance at which the peripheral stagnation 
point is disl)laced also increases, aud hence, the size of the closed central zone increases too. In this case, high- 
frequency components appear in the st)ectrum. Methods with a high scheme viscosity may fail to reproduce 
these components in m~nmrical silmflation (see, for example, [6]). 

C O N C L U S I O N S  

The results obt~xined confirm the satisfitctory accuracy and flexibility of the numerical model used to 
solve the t)rol)lem of unsteady interaction of a supersonic mxisymmetric jet with a normally positioned 1)lanar 
target of different dimensions. Ttle calcuhtted results correspond to exl)erimental and numerical data on the 
existence of au autooscillatory regiu~e within a certain range of the parameters of the problem. 

This work was supported l)y tile Krasnoyarsk Krai Science Foundation (Grant No. 5F0037). 
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