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NUMERICAL STUIYY OF THE INTERACTION
OF A SUPERSONIC GASEOUS JET WITH A PLANAR TARGET

A. L. Adrianov, A. A. Bezrukov, and Yu. A. Gaponenko UDC 533.6.011.72

Various regimcs of interaction of an axisymmetric supersonic underexpanded jet of a gas with
both a finite and an infinite planar target are studied numerically. The model of an ideal
perfect gas and one variant of Godunov’s highly accurate scheme are used. The calculated and
experimental frequency spectra of pressure oscillations in the center of the target are comparcd:
their good agreement is observed.

INTRODUCTION

The interaction of an axisymmetric supersonic jet with a planar target perpendicular to the jet axis has
been studied rather extensively both experimentally and theoretically (see, for instance [1-6]). Nevertheless,
there is some disagreement between the results of numerical calculations and physical experiments, especially
for an infinite planar target. The reason for this disagreement is the fact that most researchers used a finite-
size target (of the order of the nozzle diameter) in their numerical experiments. In this case, a regime of
self-induced oscillations with a small number of harmonics and a clear fundamental tone with a significant
amplitude is observed, which makes it possible to compare the results obtained with a physical experiment.
For an infinite (of significant length) target, it follows from the results of the physical experiment that the
autooscillatory mechanisin is expressed less clearly and is characterized by a complex frequency spectrum,
which it is difficult to be reproduce in a numerical model (difference scheme). Note that the results of
independent physical experiments conducted using different equipment are in good agreement. This confirms
the credibility of these results. The reason for the discrepancy between the numerical results and experimental
data may be the quality of the numerical method used and the formulation of the boundary conditions.

In the present work, the numerical model is tested on two autooscillatory processes (with known
characteristics) of interaction of a jet and a target located normal to it. The calculation results are compared
with the data of independent physical experiments. The choice of geometric dimensions of the computational
domain and the target corresponds to the formulation of the problem in one physical experiment or another.

1. NUMERICAL MODEL

1.1. Formulation of the Problem (Boundary and Initial Conditions). A conical nozzle of
radius OA = rp = 1 (after the correspouding normalization) with a semi-apex angle #A is located at a distance
h from a planar target DF, which is located normal to the nozzle (Fig. 1). The supersonic exhaustion from
this nozzle (segment OA of the computational domain boundary) is modeled by a flow from an isentropic
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Fig. 1

source. The segment OD of the computational domain boundary is the axis of symmetry. The segments
of the “boundary” AB, BC, and CF are “transparent” for disturbances leaving the domain. Thompson's
“nonreflecting” conditions were imposed on them [7]. The change in the position of the point F separating
different segments of the boundary DC simulates the finite size of the target (the limiting case DF = DC
corresponds to an infinite target).

Initially, the space around the nozzle is filled by a stationary gas whose state is determined by the
Pressure poo, density poy, and ratio of specific heats . Using a given Mach number at the nozzle exit MA, jet
pressure ratio n, and reduced parameters of the ambient space, we calculate a steady flow from the above-
mentioned source. In fact, this procedure reduces to determination of the Mach number M in an arbitrary
point of the segment QA of the computational domain boundary (Fig. 1).

1.2. Governing Equations. To describe unsteady spatial (with planar and axial symmetry) flows
of an inviscid heat-non-conducting gas, we write the system of gas-dynamic equations in a divergent form:
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Here p is the density, u and v are the velocity components along the x and y axes, p is the pressure, e is
the total energy, and < is the specific internal energy; v = 0 and 1 refer to the planar and axial symmetry,
respectively.

1.3. Method of Solution. It is known [1, 3] that the method of identification of discontinuities is
perfect for numerical description of inviscid heat-non-conducting gas flows from the viewpoint of accuracy
(approximation errors). As is shown in [3], this method can be used almost without any limitations for two-
dimensional steady supersonic flows with capturing (and possible filtration) of all gas-dynamic discontinuities,
including the weak ones. In our case, however, the use of this approach, as with the approach proposed by
Godunov et al. [1] (with capturing of the “main” discontinuities only) is not justified because of the dramatic
increase in the complexity of the algorithm of identification of a prior unknown structure of discontinuities.
The shock-capturing method described below was used to solve this problem.

For numerical integration of system (1), we used a quasi-monotonic difference scheme of high accuracy
[8], which is a modification of the known two-dimensional difference scheme proposed by S. K. Godunov [1].
We briefly describe the scheme used.

The difference analog of system (1) on a rectangular grid may be written in the form of the following
two-step difference scheme:
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the grid. The subscripts i and j correspond to the values of the (uantities at the cell centers (“small”
quantities in Godunov’s scheme), i + 1/2 and j £+ 1/2 refer to the values at the ribs of the grid (“large”
quantities in Godunov's scheme). and n corresponds to the values of the quantities in the time layer ¢ = nr.
To increase the order of accuracy in spatial variables in our variant of the scheme, we used a piecewise-
continuous approximation of the solution with a linear distribution of the quantities over the cell instead of a
piecewise-constant approximation (Godunov’s scheme). “Large” quantities, for example, (R.U. P);4,/2 ; and
(R.V, P); j+1/2, which enter the components of the auxiliary vectors F = F(my, mg) and G = G(g;,9gp).
are calculated by solving the corresponding one-dimensional problem of the decay of an arbitrary discontinuity

for the following input parameters:

— " is the step of

ot R
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In accordance with the accepted linear distribution of the quantities over the cell, the expressions for the
vector components are written as

1 1. _
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where r; j = (mig1,j — mij)/(mij —miy;) and i ; = (9ij+1 — 9ij)/(9i,j — 9i,j-1); the subscripts L and R
correspond to the left and right (upper and lower) vicinities of a given rib.

The function ®(r) plays the role of a limiter of the derivative and a monotonizator of the solution.
As is shown by Spekreijse [9], depending on the form of the function ®(r), we can construct a family of
“monotonic” difference schemes. which have the second order in spatial variables in the region of the smooth
solution and a high degree of localization of gas-dynamic discontinuities. In our calculations, we used the
limiter ®(r) = (r + |r|)/(1 + |r]) as the function ®(r).

The step of integration in time 7 is chosen in the course of computation at each time layer from the
conditions of stability for the two-dimensional scheme (1] 7 = K77y /(1 + 7y), where 0 < K < 1, and 7,
and 7, are time intervals during which the waves formed in the Riemann problem reach the cell boundary
along the z and y axes, respectively.

2. NUMERICAL SIMULATION

2.1. Autooscillatory Flow upon Interaction of a Jet with a Finite Target. The calculation
was performed for a jet with the following parameters: Mach number at the nozzle exit MA = 2. jet pressure
ratio n = 3, ratio of specific heats y = 1.4, nozzle radius rA = 15 mm, and semi-apex angle of the nozzle
AA = 10°. A planar target of size rp = 6.57A was located in a steady flow at a distance of h = 7.3rA, 7.57A.
and 8.0rA from the nozzle exit. The calculation was performed on a uniform grid Az = Ay = 0.05rA. The
calculation results for h = 8rA are plotted in Figs. 2 and 3 [the graph of oscillations of dimensionless pressure
on the target at the stagnation point is shown in Fig. 2 and the frequency spectrum of the process p(t) is
shown in Fig. 3.

One result of the conducted series of calculations (for different h) is the satisfactory agreement between
the fundamental frequency of the simulated process and the corresponding frequency in the experiments [5. 6]
(see Table 1). Apart from the fundamental frequency, additional frequencies were revealed, which were not
observed in [5, 6], possibly because of the time lag of the measurement equipment used and the roughness of
the numerical method (method of coarse particles).
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TABLE 1
Experimental frequencies, kHz
h Calculated frequencies, kHz
[5, 6] (10]
7.3rA 1.33 — 1.556, 2.140, 7.976, 11.868
7.5rA 1.33 — 1.315, 1.972, 4.932, 11.837
3.0rA 1.18 - 1.167, 1.751, 7.587, 10.117
6.39rA — 10.01, 19.531, 29.297 10.76, 19.36, 31.19
6.95rA — 9.033, 17.822, 26.611 9.971, 28.339, 32.557
7.51rA — 8.301, 16.602, 23.715 | 8.921, 17.843, 26.240

2.2. Autooscillatory Flow upon Interaction of a Jet with an Infinite Target. An infinite
target was located in a steady flow with the following parameters: MA = 2.098, n = 1.785. v = 1.4, and
#A = 4°. The calculation was performed on a uniform grid Ar = Ay = 0.057A. The calculation results for
h = 6.95rA are plotted in Figs. 4 and 5. The nozzle-exit radius rA was assumed to be ecual to the nozzle-exit
radius in the experiment of [10]. Figure 4 shows pressure oscillations on the target at the stagnation point.
Figure 5 shows the frequency spectrum of the process p(t).

The numerical frequencies obtained in a series of calculations and the experimental data of [10] are
listed in Table 1. We note that the calculated and experimental frequencies are in good agreement (within
5-7%). In the numerical solution (for an infinite target), high-frequency components of the spectrum (28 kHz
and higher) were obtained; their amplitude was higher than in the experiments. In our opinion, the reason
is the use of the perfect (inviscid) gas model and the insufficient scheme viscosity of the numerical method
used, and also the time lag of the measurement equipment in the physical experiment [10].

Note that the numerical and experimental results were also in good agreement in the case of a steady
flow formed upon interaction of a supersonic jet with an infinite target and in the case of an autooscillatory
flow with known characteristics upon interaction of the jet with a target of the order of the nozzle-exit
diameter [10].

3. DISCUSSION OF RESULTS

An analysis of the results obtained showed that they are in good agreement with the results of physical
experiments [5, 10], for example, in terms of the frequency of pressure oscillations at the stagnation point
on the target. The mechanism of self-induced oscillations was studied. It has the following features (noted
previously in the literature). A peripheral supersonic flow possessing a high stagnation pressure pinches the
central subsonic flow, and a peripheral stagnation point is formed. The closure of the central zone of the
flow leads to the accumulation of the gas in this region and the displacement of the central shock toward the
nozzle, which involves an increase in pressure upstreamn of the target with subsequent unclosing of this zone.
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The low scheme viscosity of the numerical method used does not allow one to damp high-frequency processes
in the closed central zone. At the same time, it is insufficient for smoothing significant nonphysical shocks

“noise” ) on the target at the stagnation point (see Figs. 3 and 5). Nevertheless, the frequency characteristics
obtained by means of the Fourier analysis correspond to experimental data.

It should be noted that. as the target size increases, the distance at which the peripheral stagnation
point is displaced also increases. and hence, the size of the closed central zone increases too. In this case, high-
frequency components appear in the spectrum. Methods with a high scheme viscosity may fail to reproduce
these components in numerical simulation (see, for example, [6]).

CONCLUSIONS

The results obtained confirm the satisfactory accuracy and flexibility of the numerical model used to
solve the problem of unsteady interaction of a supersonic axisymmetric jet with a normally positioned planar
target of different dimensions. The calculated results correspond to experimental and numerical data on the
existence of an autooscillatory regiiie within a certain range of the parameters of the problem.

This work was supported by the Krasnovarsk Krai Science Foundation (Grant No. 5F0037).
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